2.5.基于路径压缩的按秩合并优化的「并查集」
这个优化就是将「路径压缩优化」和「按秩合并优化」合并后形成的「并查集」的实现方式。
伪代码
// UnionFind.class
public class UnionFind {
int root[];
// 添加了 rank 数组来记录每个顶点的高度,也就是每个顶点的「秩」
int rank[];
public UnionFind(int size) {
root = new int[size];
rank = new int[size];
for (int i = 0; i < size; i++) {
root[i] = i;
rank[i] = 1; // 一开始每个顶点的初始「秩」为1,因为它们只有自己本身的一个顶点。
}
}
// 此处的 find 函数与路径压优化缩版本的 find 函数一样。
public int find(int x) {
if (x == root[x]) {
return x;
}
return root[x] = find(root[x]);
}
// 按秩合并优化的 union 函数
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] > rank[rootY]) {
root[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
root[rootX] = rootY;
} else {
root[rootY] = rootX;
rank[rootX] += 1;
}
}
};
public boolean connected(int x, int y) {
return find(x) == find(y);
}
}
// App.java
// 测试样例
public class App {
public static void main(String[] args) throws Exception {
UnionFind uf = new UnionFind(10);
// 1-2-5-6-7 3-8-9 4
uf.union(1, 2);
uf.union(2, 5);
uf.union(5, 6);
uf.union(6, 7);
uf.union(3, 8);
uf.union(8, 9);
System.out.println(uf.connected(1, 5)); // true
System.out.println(uf.connected(5, 7)); // true
System.out.println(uf.connected(4, 9)); // false
// 1-2-5-6-7 3-8-9-4
uf.union(9, 4);
System.out.println(uf.connected(4, 9)); // true
}
}
时间复杂度
UnionFind 构造函数 | find 函数 | union 函数 | connected 函数 | |
---|---|---|---|---|
时间复杂度 | O(N) | O(⍺(N)) | O(⍺(N)) | O(⍺(N)) |
注:N 为「图」中顶点的个数。